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Introduction 
 
Australian actuaries are increasingly using correlations to measure the 
relationships between different risks. General insurance actuaries use 
correlation matrices to allow for diversification of risk. Investment practitioners 
use autocorrelation models and correlation matrices to describe financial time 
series, in order to set strategic asset allocations and to price options. Life 
insurance actuaries allow for correlations between joint lives. But do actuaries 
understand the implicit assumptions behind the use of correlation 
coefficients? When is a correlation coefficient significant? When is a 
correlation measure appropriate? This paper looks at the historical 
catastrophe event experience in Australia and uses correlation techniques to 
analyse the relationship between different catastrophe types, and between 
consecutive years. It extends the correlation concept to introduce copulas and 
considers the usefulness of tail correlation measures for actuaries. On the 
way it looks at ways to relax the implicit assumptions that underlie correlation 
coefficients. 
 

Catastrophe Events in Australia 
 
The Insurance Council of Australia (ICA) publishes a list of large events, and 
the estimated cost to insurers of each event. Some of these events are large 
and well known, such as Cyclone Tracy costing $837m in 2001 dollars, while 
others can cost the industry less than $2m. Each event is advised with an 
event date, a short description, an original cost, and a cost in 2001 dollars. 
 

 
 
From the descriptions I have chosen to categorise the events into one (or 
more) of the following: 



 

 
• Fire 
• Hail 
• Earthquake 
• Cyclone 
• Flood 
• Storm 

 
Unfortunately these categories are fuzzy – some events do not fit into a single 
category. There is some overlap between hail and storm, between cyclone 
and flood and between flood and storm. For the purposes of this paper I have 
spread some events over more than one category. 
 
I have summarised the data to annual totals. These are shown in Appendix A 
at the end of this paper. 
 

No Frills Correlation – The Multivariate Normal 
 
Consider two unit normal distributions with a correlation coefficient of 80%. 
This is a simple example of a multivariate normal distribution. This distribution 
has a three dimensional density function as shown in Figures 1 and 2. 
 
Figure 1: Multivariate Normal Density with 0% Correlation 

 
 
A multivariate normal distribution with 0% correlation is no more than two 
normal distributions that are statistically independent. 
 



 

Figure 2: Multivariate Normal Density with 80% Correlation 

 
 
A multivariate unit normal distribution of two values (M1 and M2) with 80% 
correlation can be thought of as the linear combination of two statistically 
independent normal distributions (N1 and N2) with the relationship described in 
Equation 1. 
 
Equation 1: Multivariate Normal with Correlation Coefficient of 0.8 

M1 = N1 
M2 = 0.8 * N1 + Sqrt(1.0 – 0.8 * 0.8) * N2 
 
Equation 1 can be generalised to any multivariate unit normal distribution with 
two values and a correlation coefficient of ρ 
 
Equation 2: Multivariate Normal with Correlation Coefficient of ρ 

M1 = N1 
M2 = ρ * N1 + Sqrt(1.0 – ρ * ρ) * N2 
 

The Linearity Assumption 
 
Equation 2 can be rephrased to a more recognisable form: 
 
Y = a * X + e   where e ~ N(0, 1) 
 
In other words – multivariate normal correlations assume a linear relationship 
between the variables, with some sample variability around the best fit line. 
The amount of variability around the straight line is directly related to the 
correlation coefficient. 
 



 

Graph 1: Multivariate Normal with 80% Correlation 
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In fact, the square of the correlation coefficient is the same as the r2 measure 
in linear regression. 
 
This means that a non-linear relationship will give lower correlations. 
 
Graph 2: A Cubic Relationship 
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The line in Graph 2 represents the relationship Y = X3, so for every value of X 
one knows the exact value of Y, and vice-versa. The two numbers have an 
exact relationship. Yet the correlation coefficient for this range is only 91%. 
 



 

Graph 3: A Parabola 
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The relationship in Graph 3 is that Y = X2, so every Y value is the square of 
the X value. The two numbers have an exact relationship. Yet the correlation 
coefficient for this range is 0%. How can the correlation coefficient be zero if 
there is a real relationship? The correlation is zero because the relationship 
cannot be approximated by a straight line. 
 
The relationship in Graph 2 is just as exact as the relationship in Graph 3, yet 
the Graph 2 data has 91% correlation and the Graph 3 data has 0% 
correlation. Such a discrepancy occurs because the correlation coefficient is 
measuring how well a straight line can approximate the relationship. 
 
RULE: In the same way that a straight line cannot fully describe a non-linear 
relationship, a correlation coefficient cannot fully describe a non-linear 
relationship. Always look at the relationship shape before using a correlation 
coefficient to describe it, and if the relationship is non-linear, then try to find a 
transformation that makes the relationship linear. 
 



 

Graph 4: Annual Storm Costs vs. Annual Cyclone Costs 
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Graph 4 shows the annual cost to insurers of storms versus cyclones. The 
relationship can be approximated by a straight line. So we do not need to 
transform the data. 
 

The Normality Assumption 
 
Graph 5: A Normal Distribution 
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A normal distribution is: 
 

• Symmetrical: the same shape either side of the mean 
• Continuous: all values (from the real number set) are possible 
• Infinite: all values (from the real number set) are possible 

 



 

It is these characteristics that make a correlation coefficient a full descriptor of 
the relationship within a multivariate normal. Any normal distribution can be 
expressed as a linear function of any other normal distribution. 
 

Asymmetry 
 
Graph 6: Exponential Distribution 
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Most statistical distributions are not symmetrical. For example, the 
exponential distribution is always decreasing. One can measure the level of 
asymmetry using the skewness measure of the data. 
 
Graph 7: Distribution of Annual Cost of Storms ($2001) 

 
 
For each catastrophe type the annual cost distribution is highly skewed. For 
storms the distribution has a skewness measure of 2.4 which is fairly high. For 
earthquakes the situation is quite extreme. In most years no earthquakes 
occur, and the cost for those years is zero. But when an earthquake does 
occur, it can be quite destructive. This can be seen in Graph 8, the annual 
distribution of earthquake costs, which has a skewness of 5.3 and kurtosis of 
27.1 



 

 
Graph 8: Distribution of Annual Cost of Earthquakes ($2001) 

 
 
When one correlates two skewed distributions, one is assigning variable 
strengths of relationship at different parts of the distribution. The linear 
relationship at the extreme of the distribution will be stronger than the linear 
relationship at the central, compressed area of the distribution. In a normal 
distribution the linear relationship is equal throughout the ranges of the 
distribution. 
 
RULE: When dealing with skewed relationships, consider where you want the 
strongest relationship to be – in the central values or at the extremes. If you 
want a strong relationship between central values, then you will need to 
consider more complex relationships than are described by just a correlation 
coefficient. 
 
The situation becomes more difficult when relating two distributions with 
different amounts of skewness i.e. different shapes. It is impossible to have a 
100% correlation coefficient between two distributions with different shapes, 
because if one cannot achieve a linear transformation from one shape to 
another, then one cannot achieve 100% correlation. So depending upon the 
level of difference in distribution shapes, some ranges of correlation are 
impossible.  
 
A more meaningful measure in circumstances of skewed and different shaped 
distributions may be to compare the measured correlation against the 
strongest possible correlation for the two distributions. 
 
Another option is to transform the data to give it a symmetrical shape. 
 

Discrete Distributions 
 
Many statistical distributions have discrete values. For example, the number 
of catastrophe events per annum must be a counting number (a non-negative 
integer). Distributions with discrete values are rarely able to be expressed as 
a linear relationship.  
 



 

Graph 9: Annual Number of Cyclones vs. Storms 
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For example, one cannot express the number of storms as a linear 
relationship of the number of cyclones because each number must be a whole 
number. 
 
Since an exact linear relationship is usually impossible with discrete variables, 
a correlation coefficient of 100% is usually impossible with discrete variables. 
  
A more meaningful measure in circumstances of discrete distributions may be 
to compare the measured correlation against the strongest possible 
correlation for the two distributions. 
 
Whatever transformation one makes to a discrete distribution, it will always 
remain discrete. 
 
RULE: Always consider how discrete values make the correlation coefficient 
lower, and hide the strength of a relationship. 
  

Finite Ranges 
 
Normal distributions can range from negative infinity to positive infinity. So any 
linear combination of normal distributions produces a value that lies on 
another normal distribution. 
 



 

Graph 10: A Log Normal Distribution Cannot Take Negative Values 
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Some distributions have finite ranges. For example, the cost of catastrophes 
per year must be a non-negative number. But some linear combinations of 
statistical distributions can result in a negative number. Both the assumptions 
of normality and linearity fail in such circumstances. A correlation coefficient 
can describe the strength of the linear relationship for these situations, but an 
additional measure may be required to capture the non-negative behaviour. 
 
If the boundary conditions are very rarely reached (e.g. a Log Normal with 
mean 100,000 and standard deviation of 100 will find it almost impossible to 
approach its minimum possible value of zero), then the normality assumption  
 
RULE: Consider any boundaries upon the values that may be taken. If those 
boundaries are likely to be reached within a standard sample size, then the 
distribution is not very well described using linear relationships and normal 
distributions. In such cases a correlation coefficient can partly only describe a 
relationship. 
 

Statistical Significance 
 
Now that we know that the correlation coefficient is a measure of the strength 
of a linear relationship, we can look at some trivial cases to consider the 
reliability of a correlation coefficient in small samples. 
 

Correlations for Data Sets with a Single Value 
 
It is impossible to measure the correlation when a data set contains only one 
pair of numbers. This equates to fitting a straight line to a single point. 
 



 

Graph 11: Correlation for One Data Pair 
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As can be seen in Graph 11, there are many possible lines that pass through 
the single data point. One does not know which line to use, so one cannot 
measure a correlation coefficient. 
 

Correlations for Data Sets with a Two Values 
 
As we know for geometry, it is always possible to fit a straight line through two 
points. A data set with two pairs of values will always produce a correlation 
coefficient of 100% or -100% because the two points can always be exactly 
described by a straight line. 
 
Graph 12: Correlation for Two Data Pairs 
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So for two pairs of data, the correlation coefficient will always be statistically 
insignificant. 



 

 

Bootstrapping for Statistical Significance 
 
There are some statistical formulae for the significance of correlation 
coefficients, but these rely upon an assumption of normality. In many real life 
situations actuaries are working with skewed, discrete and / or curtate data. In 
such cases we need to look elsewhere for a measure. 
 
I have found bootstrapping to be a practical way of measuring the statistical 
significance of correlations within non-normal data samples. All one has to do 
is to generate a number of simulated samples independently drawing from the 
actual samples (with or without replacement). Since the two data series within 
the simulation are drawn independently, the simulated samples will have an 
underlying correlation of zero. One then measures the percentage of 
simulated samples that have a sample correlation measure greater in 
magnitude than the real sample. If that percentage is low, then it is unlikely 
that the underlying correlation coefficient is zero. 
 
Bootstrapping automatically copes with skewed and discrete distributions. 
 
The number of earthquakes in each year is only zero or one. There have been 
only two years in which earthquakes caused significant losses. So it is quite 
possible for a spurious correlation measure to occur. The sample correlation 
for the annual number earthquakes and hail events is 33%. One would not 
expect earthquakes to be related to hail storms in any physical way. When 
one does a bootstrap test of statistical significance it validates our prior 
assumption that there is no relationship. 
 
RULE: The statistical significance is a function of the sample size. Don’t just 
accept large correlation coefficients as significant, and don’t just reject low 
correlation coefficients as insignificant. 
 



 

Does Bad Luck Come In Threes? 

 
 
When pricing catastrophe reinsurance actuaries often implicitly assume a 
process with no memory. They do this by using a Poisson distribution for the 
number of catastrophe events. We can test the validity of this assumption by 
testing the significance of the single period lag autocorrelation of the number 
of catastrophe events (the correlation between the number of catastrophe 
events in consecutive years). 
 
Figure 3: Autocorrelations for Catastrophe Events 

 Fire Hail Quake Cyclone Flood Storm 
Correlation -0.1 -0.09 -0.03 0.23 -0.02 0.28 
Significant No No No Yes No Yes 

 
I have used the bootstrap technique to test the significance of the correlation 
measures because the sample distributions are skewed, discrete and non-
negative. For cyclone and storm events there is a statistically significant 
correlation between consecutive years. 
 
This means that bad years for cyclone and storm may come in groups of 
three! 
 
The significant autocorrelation of cyclones and storms has important 
implications for the pricing of aggregate deductible catastrophe reinsurance 
covers and catastrophe reinsurance covers that span more than one year. 
 



 

Copula Is Not a Dirty Word! 

 
Throughout this paper I have mentioned the possibility of doing 
transformations upon data in order to allow simple correlation processes to 
operate more naturally. There is a branch of statistics that deals with the 
interrelationship of individual distributions into multivariate distributions, 
transforming their values using their survival functions and then formulating 
the relationship between those survival functions. The relationship between 
the survival functions is called a copula. 
 
A multivariate normal distribution follows a normal copula. The normal copula 
is one of the simplest, and serves as a good example for understanding how a 
copula works. Say we wanted to generate some random numbers from two 
Gamma distributions using a normal copula. The steps to follow would be: 
 

1. generate random numbers from a multivariate normal with the required 
correlations 

2. transform the generated values to their survival function values (using 
the inverse cumulative density function for the Normal distribution) 

3. transform the survival function values to their Gamma distribution 
values (using the cumulative density function for the Gamma 
distribution) 

 
The sample values from the Gamma distribution would be correlated, 
although the correlation coefficient would be lower than that of the Normal 
copula because the Gamma distribution is skewed. Using an 80% correlation 
in the Normal copula on a Gamma(1, 5) and a Gamma(5, 1) distribution 
causes a correlation coefficient of 75%. 
 



 

Graph 13: Gamma Distribution Samples Using Normal Copula 
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There are many different copulas. For a comprehensive description of 
different copula I recommend the books in the references section at the end of 
the paper. Different copula cause different relationships between the survival 
functions. Some copula cause stronger relationships in extreme values. Other 
copula  
 



 

Tail Dependence 

 
There are situations in real life where day to day variability is not correlated, 
but some large shocks cause a strongly correlated effect between data sets. 
Some examples are: 
 

• share prices between different stocks 
• insurance losses versus share prices 
• commodity prices between different commodities 
• road accidents between different areas 

 
In many cases we are more concerned with the correlation of severe events 
than we are with the correlation of everyday events. 
 
Graph 14 shows some real life data (with the labels removed for 
confidentiality purposes) where the strength of the relationship between the 
two variables is not constant. 
 



 

Graph 14: Real Life Correlation Varying at Tails 

 
 
I wanted to determine whether the data in Graph 14 could be adequately 
described by a Normal copula, or whether the extreme values had a stronger 
relationship. There is a tail dependence measure defined in Joe (1997) which 
he defines as below. 
 
Equation 3: Upper and Lower Tail Dependence (Joe 1997) 

 
 
Unfortunately the definition in Equation 3 requires that one knows the 
underlying copula before one can measure the tail dependence. There does 
not seem to be any broadly accepted sample measure of tail dependence. 
 
So I propose an empirical variant of the tail dependence measures. My 
proposal is: 
 



 

Equation 4: Proposed Sample Tail Dependence Measures 

 
λU = Pr(U1 > u | U2 > u) 
λL = Pr(U1 < u | U2 < u) 
where the probability u is equal to 0.25 
 
There are practical problems with taking the limit (as required by Equation 3) 
on a sample set. So one must choose a value of u at which to measure the 
probabilities, and use these probabilities as a sample estimate of the tail 
dependence. My recommendation of 0.25 is based upon some 
experimentation with different real life data sets, and is a compromise 
between stability of estimate, and the requirement that the measure resemble 
the limit in Equation 3. 
 
The data in Graph 14 has an upper tail dependence coefficient of 0.30 and a 
lower tail dependence coefficient of 0.09. 
 
We have to be able to interpret the upper and lower tail coefficients in order to 
get meaning from them. So I have used a normal copula with the required 
correlation, and then measured the probability of obtaining a sample tail 
dependence measure exceeding the sample values. The upper tail 
dependence coefficient lies well outside the 90% confidence interval of 0 to 
0.20. So we can reject the null hypothesis of a normal copula relationship. 
The upper tail is more strongly related than a Normal copula would cause. 
However the lower tail dependence measure is within the confidence interval 
from a Normal copula. 
 
RULE: If the relationship between extreme values is important, then don’t rely 
on correlation coefficients of the entire sample set. Measure the tail 
dependencies. 
 

Australian Catastrophe Dependence Measures 
Correlation Coefficients of Annual Catastrophe Costs 
Figure 4: Correlation Matrix for Annual Catastrophe Costs (1985 onwards, > $30m) 

 
 
Using the bootstrap method, none of the sample correlation coefficients are 
significantly different to zero. We cannot reject the null hypothesis that the 
annual costs of losses from different catastrophe types are unrelated. 
 



 

 
 
We may be surprised by this result. Some catastrophes are related to how 
wet the weather has been. It is difficult to imagine a flood putting out a 
bushfire because floods occur after lots of rain, and bushfires occur during 
droughts. 
 

 
Many years ago, when I was studying to be an actuary at university, my 
professor would remind us that averages were sometimes insufficient to 



 

describe a situation. He would tell us that a man, with his head in a furnace 
and his feet in ice, has a comfortable average temperature – but the variability 
of the temperature was of great concern to him! The situation is similar with 
correlations. A correlation coefficient is like an average – it does not tell us 
about the extremes. 
 

Tail Dependence of Australian Catastrophes 
 
In this section I will focus upon the relationship between cyclone losses and 
storm losses. These two catastrophe types have the strongest correlation 
coefficient in the period, and one would expect that they might be related. 
 
Graph 15: Annual Storm Losses vs. Cyclone Losses 

 
 
The sample correlation coefficient is 0.34 but this is statistically insignificant. 
Most of the linear correlation comes from the outlier in the top right hand 
corner of the graph. The lower tail dependence coefficient is zero – indicating 
that there is little or no relationship between low values. However the upper 
tail dependence coefficient is 0.25, which is significantly greater than one 
would expect from a normal copula. 
 



 

These sample statistics may indicate that annual storm losses and annual 
cyclone losses are only related when severe losses occur. This may be due to 
el-nino climatic cycles. 
 
An insurer will be concerned with the possibility of these two different 
catastrophe types being strongly positively related. If an insurer had only 
looked at the correlation coefficient, then it would have incorrectly concluded 
the level of diversification benefit that it is receiving. Actuaries need to 
understand more than simple correlations in order to manage risk. 
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Appendix A: Annual Catastrophe Event Counts 
Financial 

Year Fire Hail Quake Cyclone Flood Storm 
1967 1 1 0 0 0 0 
1969 0 0 1 0 0 0 
1970 0 0 0 1 0 0 
1971 0 0 0 0 2 0 
1972 0 0 0 2 0 0 
1973 0 0 0 1 0 0 
1974 0 1 0 2 2 0 
1975 0 0 0 1 1 0 
1976 0 1 0 2 0 0 
1977 1 1 0 1 1 2 
1978 0 0 0 1 1 2 
1979 0 0 1 1 0 0 
1980 1 1 0 2 0 0 
1981 0 0 0 1 0 2 
1983 1 0 0 0 0 1 
1984 0 0 0 1 0 0 
1985 0 1 0 0 1 0 
1986 1 2 0 1 0 0 
1987 1 1 0 0 0 2 
1988 0 0 0 1 4 0 
1989 0 0 0 1 0 3 
1990 0 4 1 1 1 0 
1991 1 2 0 1 0 2 
1992 1 0 0 0 2 2 
1994 1 0 0 0 1 2 
1995 0 0 1 1 0 1 
1996 0 1 0 1 1 2 
1997 1 4 0 1 1 2 
1998 1 0 0 1 2 6 
1999 0 2 0 2 2 4 
2000 0 0 0 3 2 4 
2001 0 0 0 0 2 5 
2002 1 0 0 0 0 2 
2003 1 0 0 0 0 0 

 



 

Appendix B: Annual Catastrophe Event Costs 
Financial 

Year 
Fire Hail Quake Cyclone Flood Storm 

1967 101 36 0 0 0 0 
1968 0 0 0 0 0 0 
1969 0 0 12 0 0 0 
1970 0 0 0 79 0 0 
1971 0 0 0 0 43 0 
1972 0 0 0 159 0 0 
1973 0 0 0 150 0 0 
1974 0 98 0 176 282 0 
1975 0 0 0 837 63 0 
1976 0 49 0 86 0 0 
1977 30 131 0 49 23 62 
1978 0 0 0 39 21 59 
1979 0 0 12 41 0 0 
1980 34 24 0 23 0 0 
1981 0 0 0 17 24 60 
1982 0 0 0 0 0 0 
1983 324 0 0 0 0 19 
1984 0 0 0 12 0 0 
1985 0 299 0 0 132 0 
1986 45 58 0 65 0 0 
1987 12 161 0 0 26 42 
1988 0 0 0 30 64 2 
1989 0 0 0 35 0 51 
1990 0 433 1124 42 38 0 
1991 12 42 0 75 8 248 
1992 12 0 0 0 26 120 
1994 58 0 0 0 12 49 
1995 0 0 36 11 0 29 
1996 0 40 0 2 31 24 
1997 10 173 0 8 20 10 
1998 3 0 0 71 71 91 
1999 0 1776 0 39 39 67 
2000 0 0 0 34 18 58 
2001 0 0 0 0 36 95 
2002 0 0 0 0 0 0 
2003 153 0 0 0 0 0 

 


